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THE INTEGER CHEBYSHEV PROBLEM 

PETER BORWEIN AND TAMAS ERDELYI 

ABSTRACT. We are concerned with the problem of minimizing the supremum 
norm on an interval of a nonzero polynomial of degree at most n with integer 
coefficients. This is an old and hard problem that cannot be exactly solved in 
any nontrivial cases. 

We examine the case of the interval [0, 1] in most detail. Here we improve 
the known bounds a small but interesting amount. This allows us to garner 
further information about the structure of such minimal polynomials and their 
factors. This is primarily a (substantial) computational exercise. 

We also examine some of the structure of such minimal "integer Chebyshev" 
polynomials, showing for example that on small intevals [0, 5] and for small 
degrees d, xd achieves the minimal norm. There is a natural conjecture, due 
to the Chudnovskys and others, as to what the "integer transfinite diameter" 
of [0, 1] should be. We show that this conjecture is false. 

The problem is then related to a trace problem for totally positive algebraic 
integers due to Schur and Siegel. Several open problems are raised. 

1. INTRODUCTION 

The ubiquitous Chebyshev polynomial 

(1.1) Tn(x) cos(nrarccos x) = x [( + x2- + _ X2 - 

is a polynomial of degree n with integer coefficients and with lead coefficient 2n-1 
that equioscillates n + 1 times on the interval [-1, 1]. For fairly simple reasons, 
based on this equioscillation, it follows that 

n ~ ~ ~ l-nilT min Icx - Pn-m 11-1,1 = 112Tnll[1 
Pn-lE'Pn-1 _i=1, 1] 2nl 

Here and throughout, P1n denotes the set of all polynomials of degree at most n 
with real coefficients, and 11 IIA denotes the supremum norm on a set A. We denote 
by Zn the set of all polynomials of degree at most n with integer coefficients. 

The polynomial 

(1.2) pN() := 2 4 a)Tn (2 -a-b 
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is now the monic polynomial of degree n of smallest supremum norm on the interval 
[a, b], and it satisfies 

(1.3) JjPnjj[a,b] = 2 ( 4 ) 

The Chebyshev polynomials have a central role to play in minimization problems 
in the supremum norm as well as many other extremal problems. See, for example, 
[6]. 

The analogous problem where the polynomials are restricted to have integer 
coefficients is very much harder. For a very nice discussion of this problem, see 
[15]. 

We define 

(1.4) Qn[a, b] (inf lIPII[,ab]) 

and let 

(1.5) Q[a, b] := inf{Qn[a, b]: n = 0, 1, ... } = lim Qn[a, b]. 
n---oo 

We call any polynomial p E Zn that achieves Qn[a, b] an nth integer Chebyshev 
polynomial on [a, b]. The above limit exists and equals the infimum because 

Qn[a,b] >min{1 21/nb-a} 

as follows from the unrestricted case (1.3), and because 

(Qn+m[a, b]) n+m < (Qn[a, b])n (Qm[a, b)) m 

since I1rsII[a,b] < jjrjl[a,b]ljsII[a,b]. See, for example, [17, Chapter 3, ?1, Problem 98]. 
We have the trivial inequality 

(1.6) Q[a, b] > min {1, 4 }. 

We also have 

(1.7) Q [a, b] < Qn [a, b] 

for any particular n. Thus, good upper bounds can be achieved by computation 
(although the computation to any degree of accuracy is hard). The limit Q[a, b] 
may be thought of as an integer version of the transfinite diameter. 

Since p = 1 is a candidate for achieving the infimum in (1.4) and since in (1.3), 
2((b - a)/4)n > 1 if b - a > 4, we observe that on intervals [a, b] of length greater 
than or equal to 4 we have that Qn [a, b] = Q[a, b] = 1. We will thus from now on 
restrict our attention to intervals of length at most 4. 
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Hilbert [12] showed that there exists an absolute constant c so that 

inf IlPIIL2[a,b] < C/2 (b a 1/ 

and Fekete [9] showed that 

(Qn[a, b]))n < 21-2 (n-1) (b - 

For refinements of their inequalities, see Kashin [13]. 
From the above it follows that 

(1.8) b- 
< Q[a,b] <(b 4 LQa J?4, 

Recall that b - a < 4. 
There is a pretty argument due to Gelfond [see 10] to see that integer coefficients 

really are a restriction on [0, 1]. If 0 =A Pn E Zn, then for some integer m $A 0, 

112 i 12 f'2(X X 
I lPnl[o1 _> I lPn L2[0,11 =. Pn (x)dx= LCM(1, 2,.. ,2n +1) 

o 

where LCM denotes the least common multiple. Now LCM(1, 2, . n. , n))l/n e, 

by the prime number theorem, and it follows that 

Q[0, 1] > 1/e. 

This is not, however, the right lower bound. 
The best previous bounds known on [0, 1] give 

(1.9) < Q[0,1]? 2 3541 2.37684... 234 

See Aparicio [2,3,4,5], Amoroso [1], and the references therein. The upper bound 
is in Amoroso [1]. The lower bound is based on a method attributed to a number 
of people and variously rediscovered. (Aparicio [3] attributes it to Gorshkov.) It 
amounts to, in our context, showing that for every fixed Pn E Zn there exist infin- 
itely many polynomials qk E Znk with no common factors with Pn, with all their 
roots in (0, 1), and with leading coefficients a,k satisfying 

a1/knk < 2.37684... 

(see ?3). This argument rests on the following lemma, which is an easy consequence 
of the fundamental theorem of symmetric polynomials. See, for example, [8]. 
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Lemma 1.1. Suppose Pn C Zn and suppose qk(z) := akZk + * + ao E Zk has all 
its roots in [a, b]. If Pn and qk do not have common factors, then 

(I lPn II[a, b] ) 1/n , I a k1-1/k 

Proof. Let /1, /2,... , /3k be the roots of qk. Then 

lak | Pn (031)Pn (32) ... Pn (3k) 

is a nonzero integer, and the result follows. O 

Aparicio also shows that if [a, b] = [0, 1], then any polynomial p E Zn for which 
the infimum in (1.4) is achieved, for sufficiently large n, has a factor of the form 

(1. 10) (x)LA1 nJ(1 - x) L1 n] (2x -1) LA2n] (5X2 - 5x + 1)LAL3nJ, 

where A1 > 0.014, A2 > 0.016, and A3 > 0.0037. 
In ?2 we improve the upper bounds of Q[0, 1] to 

Q[0,1]]-2.3605... 

and use this to increase the number of factors that must divide an nth integer 
Chebyshev polynomial Tn on [0,1]. The analysis, and in particular the approach 
to the computations on Q[0, 1], is the content of ?2. 

In ?3 we improve, by different methods, the lower bound of the multiplicity of the 
zero of Tn at 0 and 1. We use this to show, in Theorem 3.4, that the natural lower 
bound of (1.9) is not the best possible lower bound. This disproves a conjecture of 
the Chudnovskys [8]. 

We also establish a lower bound for the multiplicity of the zero at 0 of the 
integer Chebyshev polynomial Tn,a on [a, 1]. This is used to show that there exists 
a constant 6 > 0 so that for every a E [-6,8] and sufficiently large n, the nth 
integer Chebyshev polynomials Tn,a on [0, 1 + a] are just the nth integer Chebyshev 
polynomials Tn,o on [0, 1]. It follows that the function Q(x) := Q[0, x] is constant on 
[1 - 6,1 + 8]. This parallels various results of Amoroso [1]. In particular, Amoroso 
shows that there exists a constant 6 > 0 so that for every a E [-6,8], 

Q [pl/ql, P2/q2] = Q [pl/ql - a, P2/q2 + a] 

if Pi, qi , P2, and q2 are positive integers with P1 q2 - P2 qi = 1. Our methods are 
quite distinct. 

Analogues of the [0, 1] case are also established on intervals [0, 1/m], m E N. 
It follows, for instance, that the there exists an absolute constant c > 0 so that 
Tn (x) = Xn for every n < cm, where Tn denotes an arbitrary nth integer Chebyshev 
polynomial on [0,1/m]. We also show that 

limsup ((Q[0, 1/m])1 -m) < 2-6 
mN 

for some e > 0. 
In ?4 we relate the integer Chebyshev problem on small intervals [0,1/m] to an 

old problem of Schur and Siegel on the trace of totally positive algebraic integers. 
We conclude with a number of open problems. 
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2. INTEGER CHEBYSHEV POLYNOMIALS ON [0,1] 

We restrict our attention to the interval [0,1]. Though we observe in passing 
that 

(2.1) (Q[-1, 1])4 = (Q[0, 1])2 = Q[0, 1/4] 
as a consequence of the changes of variable x - x2 and x -* x(1 - x) and symmetry. 
(The dependence of the constant Q [a, b] and the minimal polynomials on [a, b] is 
interesting and is explored a little further in later sections.) Even computing low- 
degree examples is complicated. 

n nth integer Chebyshev polynomial on [0,1] Qn[0, 1] 

1 x or (1-x) or (2x-1) 1 
2 x(1-x) 1/2 
3 x(1 - x)(2x - 1) 1/(2.18 ...) 
4 x2(1-x)2 or x(1-x)(2x-1)2 1/2 
5 x2(1-x)2(2x-1) 1/(2.23 ...) 
6 [x(1-x)(2x - 1)]2 1/(2.18 ...) 

Note that we do not have uniqueness, though it is open as to whether we have 
uniqueness for n sufficiently large. The arguments for the above table are of the 
following variety. Consider, for example, the case n = 5. Let T5 E Z5 be a 
5th integer Chebyshev polynomial on [0,1]. Then T5(0) and T5(1) are integers 
of modulus less than 1/(2.23 ... )5, so both of them must be 0. Using Markov's 
inequality, we obtain that 

HITs Hro[0,l] ? 5OHlT5H [o,l] (2.23 ... )< 

Since T5(0) and T5(1) are integers of modulus less than 1, both of them must be 
zero. Since 25T5(1/2) is an integer of modulus at most 32/(2.236 ... )5 < 1, it must 
also be zero. Thus we have 

x2(1-x)2 (2x-1) divides T5, 

and the result follows. 
Let 

po(x):x, 

Pi(x) 1 -X, 

P2(x) 2x - 1, 

p3(x) 59 - 5x + 1, 

p4(x) 13x3 - 19x2 + 8x- 1, 

p5 (x) 13x3 - 20x2 + 9x - 1, 

p6(x) 29x4 - 58x3 + 40 2- lIx + 1, 

p7(x) :=31x4 -61x3 + 41x2 - llx + 1, 

p8(x) 31x4 - 63x3 + 44x2 - 12x + 1, 

p9(x) 941x 8- 3764x7 + 6349x6 - 5873x5 

+ 3243x4 - 1089x3 + 216x2 - 23x + 1. 

We have 
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Proposition 2.1. Let 

67 67 24 9 3 P210 : Po .Pi . p2 p34 *4p5 *p6 p7 *P8 *P9; 

then 
(IlP2111[o,l])1/210 2 

and hence 

Q[0, 1] <- Q[,]?2.3543 ... 

Proof. This proof is obviously just a computational verification. It is the algorithm 
for finding P210 which is of some interest. It is based on LLL lattice basis reduction 
[14] in the following way. 

a] Lattice basis reduction finds a short vector in a lattice. If we construct a 
lattice of the form 

n m 

P(Z) * Ckz = ZE Ok zk 

k=O k=O 

where p is a fixed polynomial and the set {(aO 1,.. .,a an)} is a lattice, then the 
set {(3o Io, I ... I 3m)} is also a lattice, and LLL will return a short vector in the 

sense of Emo INk 12 being relatively small. Observe that (k=U0 1k 12) 1/2 iS just 

the L2 norm on the unit disk of the polynomial Em Okzk. So LLL lets us find 
polynomials of small L2 norm (and hence small sup norm) on the disk, and we can 
do this while preserving divisibility by a fixed p. 

b] Convert the problem from the interval [a, /] to the disk. This is easy. One 
first maps [a, ,3] to [-2,2] by a linear change of variables. One then lets x := z+1/z. 
This maps a polynomial in x on [-2,2] to a polynomial in z and 1/z on the boundary 
of the unit disk. 

c] Attack the problem incrementally by using a] and b]. That is, at the kth 
stage find a polynomial qk of degree kN divisible by qk-l of degree (k - 1)N using 
LLL on a lattice of size N + 1. This allows us to keep the size of LLL fairly small 
and uses the fact that integer Chebyshev polynomials tend to have (of necessity) 
many repeated factors. We used N = 10 in the actual computation and started 
with qo :=1. D 

We can computationally refine the above proposition as follows: 

Proposition 2.2. The following inequalities hold: 

Q[0, 1/4] < 5.5723...' 

Q[0,1]]-2.3605... 

Proof. We minimize 

iis ..9a 
,. S9a9 11014 
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where 

SI (X) :=X, 

S2(x) 4x - 1, 

S3(x) 5x - 1, 

S4(x) 29X2- llx + 1, 

S5(x) 169x3 - 94X2 + 17x - 1, 

S6(x) 961x4 - 712x3 + 1942 - 23x + 1, 

S7(X) 941x4- 703x3 + 193X 2- 23x + 1, 

S8 (x) 969581x8 - 1441511x7 + 928579x6 - 338252x5 

+ 76143x4 - 10836x3 + 9519 - 47x + 1, 

Sg(x) := 6x - 1, 

by using the simplex method on a large grid of points {Xk}=l' that includes all the 
extreme points of the above polynomials in [0, 1/4] to minimize the linear system 

a2 ? log Si2 (X k k = 1,2, ... , N, 

subject to 
9 

Eali=l 11 i>O, i=1,2, ....... , 9. 
i=l 

If we do this, we obtain that 

6al,aC*2, . , a9] 

:=[.719122, .13093, .083914, .02928, .01450, .005154, .01028, .003612, .003189] 

and can check that 

lis11S2a2 Ss 1l 
- 5.5724... 

Now raise the whole result to a power that makes each ai integer (1010 works) and 
the first inequality of the proposition follows. The second inequality follows from 
(2.1). 

The choice of Sl, S2,... ,S7 comes about on transforming P1, P2,... ,P9 from 
[0, 1] to [0, 1/4] by x -* x(1 - x). So, for example, (p4p5)(x) = S5(x(1 - x)). The 
remaining two polynomials S8 and S9 were chosen somewhat gratuitously (though 
S9 is the next in a particular sequence of totally real polynomials with roots in 
[0,1/4] and with small leading coefficient). O 

We could also have solved the above minimization problem using Remez's algo- 
rithm. 
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Corollary 2.3. Let k be a positive integer, and let P210 be as in Proposition 2.3. 
Then (p210)k divides all the nth integer Chebyshev polynomials on [0, 1] provided n 
is sufficiently large. 

Proof. Each pi, i = 0, 1,... , 9, is irreducible and satisfies 

pi(x) = akX k+ ak-lX k +1 + + ao 

with 
ak 1/k < 2.36. 

Each pi also has all roots in [0, 1]. It follows now by Lemma 1 that if Qn is a 
polynomial of degree n with integer coefficients, and 

(IIQn 11 [,1)l1/n< 1 (II~IIo,D1~ ~2.3605' 
then pi divides Qn 

Also, by Markov's inequality, 

IQnk 1 [0o 1] < (2n)k IlQn11[o,j] 
and 

jjIQ(k)jj,0'1 1]) 
-k 

< (2 n) 1/(n-) (llQnjj[?'1 1]) 
-k 

2.36 

for n sufficiently large compared to k. So not only does pi divide Qn, but pi 
divides Q(k). In particular, each of the factors pi must appear to arbitrarily high 
multiplicity eventually. 

We deduce immediately as above: 

Corollary 2.4. The polynomials 

Po,Pi, ... ,pg 

are the only irreducible polynomials, with all their zeros in [0, 1], of the form 

p(z) = anzn + an-Izn1 + + ao, ai E Z, Ian 7/n < 2.36. 

Furthermore, the polynomials 
Po,Pl,.**. ,p9 

where pj (z) := zdeg(P3)pj(l/z), are the only irreducible polynomials with all their 
zeros in [1, oo) that satisfy 

Nl/d < 2.36. 

(Here, N = N(pj) is the norm of pj on [0, 1], that is, the product of the zeros of 
pj, and d = d(pj) is the degree of pj.) 

Proof. This follows easily from the above computations and Lemma 1. (One needs 
to consider the change of variable x -* x(l - x).) This should be compared with 
Smyth [20,21] and Flammang [11], where many similar results are obtained, in- 
cluding forms of the one above. O 
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3. FINER STRUCTURE 

The exact dependence of Q[a, b] on the interval [a, b] is interesting and compli- 
cated. If we let 

Q(x) := Q[0,x], 

then clearly Q is a nondecreasing function on (0, ox). Obviously, limx,o Q(x) = 0 
(consider xm on [0, 8]). So Q(x) maps [0, 4] onto [0, 1]. It is an exercise to show 
that Q is in fact continuous. This follows mostly from a theorem of Chebyshev that 
gives 

HlPn 11 [0,6+JE] < (1 + kE6,)n |1Pnjlj[o,8I 
for every Pn E 1Pn. Here, k,,6 is a constant that tends to zero as e tends to zero, 
independently of the degree n and independently of 6 > 6o > 0. 

What is less obvious is that Q(x) is locally flat on many intervals. Indeed, it is 
conceivable that the derivative of Q is almost everywhere zero. We cannot prove 
this. However, we prove the nontrivial fact that Q is constant on a specific open 
neighborhood of 1. See Theorem 3.1 and Corollary 3.12 and compare [1]. 

We now show that an nth integer Chebyshev polynomial on [0,1] has at least 
n/2 of its zeros at 0 and 1 provided n is large enough. To this end, we need some 
results on orthogonal Miintz-Legendre polynomials. Let A = {Ai}jo be a fixed 
sequence of distinct, nonnegative real numbers. Let 

n 

Ln(X) = Ln{Ao, Al.... .. An} (x) = Zcj,nXAa, x C (O, oo), 

j=0 

with 

n-1J(Aj 
+ Ai + 1) 

C',n (n 0 A i 3A - Ai) 

It is shown in [6] that 

r1 
[1LX~LX~dX- n,m Ln (x) L, (x) dx =2'+1 n, m =O,1,... . 

where 8n,m is the Kronecker symbol. From this orthogonality it follows easily that 

1 =min{ n 
oaixAi L[o1] ao al ... an-1 E iR an =1} 

and hence that 
lan| < cn, V2An + 1En aix 

for every ao, a1, ..., an E R. 
Let 0 < k < n be fixed integers. Let Pn C 1Pn be of the form 

Pn(X) = Xn-kQk(X), Qk E Pk, Qk(0) = 0- 

Applying the above inequality with n replaced by n - k and 

Ai :=n-i, i=0,1, ... I,n-k, 
we obtain that 

(3.1) jQk(0)j? < V2k+I n- (k + 
(rn i) + 

1) lPfHL2[0,11 

n k ) - k ) k 
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Theorem 3.1. Let T := T,{ [0, 1]} E Z be an nth integer Chebyshev polynomial 
on [0,1]. Then T, is of the form 

Tn(x) = xk(l - X)k Sn-2k(X), Sn-2k E Z-2k, 

where 0.26n < k if n is large enough. 
As a consequence, there exists an absolute constant 6 > 0 (independent of n ) so 

that Tn is an nth integer Chebyshev polynomial on larger intervals [-a, 1 + a] for 
every a (0,A ]. 

Proof. By symmetry, it is sufficient to prove that if 

Tn(X) = Xk Qn-k(X), Qn-k C Zn-k, Qn-k(O) 7' 0, 

then 0.26n < k if n is large enough. 
Observe that Qn-k E Zn-k and Qn-k(O) 74 0 implies that 1 < IQn-k(0)I. Also, 

by Proposition 2.2, 

11 Tn 11L2 [0,11 < JjTnjj[0,j] < (2.36 +,,) 

for some e > 0, if n is large enough. These, together with (3.1), yield that 

1 < n+(n+kZ+) (2.36+e)- n. 

Hence, by Stirling's formula, if k/n < a < 1/v'5 and n is large enough, then 

2.36< ( 1 ) 01+a 
-(2ce)2a(i1- c)l-a 

from which we compute that a > 0.26. This finishes the proof of the first statement 
of the theorem. The second statement of the theorem follows from the first one by 
using a result of Saff and Varga [18] and Chebyshev's inequality. This result of Saff 
and Varga is formulated in Lemma 3.2. O 

If P E Zk has all its zeros in [a, b], then we say that P is totally real on [a, b]. 
The collection of all totally real polynomials P C Zk on [a, b] will be denoted by 
TRk [a, b]. Let 

00 

TR[a, b] := U TRk [a, b]. 
k=O 

Let 
Po(x) :=x, and Pk(X) :=x 2k Pk-l(x-l/X), k= 1,2,. * 

Then Pk C TR2k [R]. Let Qk E Z2k be defined by 

Qk(X) = Pk (X)Pk(-X). 

Then Qk C TR2k [0, oX]. Let Rk be defined by 

2k 

(3.2) Rk(X) = X 2kQk(/X - 1) =: Eaj,2kXj. 
j=O 
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Then Rk E TR2k [0, 1] and 

k k k 

(3.3) Ia2k,2k |I/ = IF[k] (i)11/2 11 IFI] (i)I1/23, F(x) x - 

j=1 

where i is the imaginary unit and 

(3.4) F -11 := F, F[] := Fj-1] o F, j= 2,3. 

It is fairly simple to see that for every fixed pn, E Zn, there exist infinitely many 
Rk with no common factors with pn. Since 

k 

(3 5) ky:= lim IF[k](i)11/2k II |F[j1(i)11/23 = 2.37684... 
j=1 

the lower bound 

= 2.37684... -[0] 

follows from Lemma 1.1 in a canonical fashion. It might be natural to conjecture 
that -y1 is the sharp lower bound. However, using Theorem 3.1, we show that -y1 
is not the best possible lower bound for Q[O, 1]. For this we need two lemmas. The 
first one is due to Saff and Varga [18]. 

Lemma 3.2. Let {pn} be a sequence of polynomials of the form 

Pn(X) = x k(n) qn-k(n)i qn-k(n) EPn-k(n)v 

where 0 < k(n) < n are integers and where n -* ox. Suppose that there exists a 
constant 0 with 0 < 0 < 1 so that 

0< (, n=1,2. 

If 
lim sup I |Pn| II 1 

n---00> 

then 
lim pn(X) = 0 for all x E [0, 02) 

n--oo 

uniformly on every closed subset of [0, 02). Moreover, the convergence is geometric, 
in the sense that for any closed K C [o,02), 

1/n 

The proof of the next lemma follows simply from the definition of Rk given by 
(3.2); we omit the details. 

Lemma 3.3. For every 6 E (0,1) there exists a constant 7r = rj(6) > 0 so that Rk 

has at least r12k zeros in [0, 5] for every large enough k. 
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Theorem 3.4. There exists an e > 0 so that 

(ay - E<1 ? Q[0, 1], 

where a = 2.37684... is defined by (3.5). 

Proof. Let Tn := Tn{[0, 1]} E Zn be an nth integer Chebyshev polynomial on [0, 1]. 
There exists an infinite set An c N so that Rk and Tn do not have common factors 
for every k E An. By Theorem 3.1 and Lemma 3.2 there exists a constant o E (0, 1) 
so that 

(3.6) ITn(X) I ?n < aIITn|II1/nl x E [0, 1/16], 

if n is large enough. In what follows we asume that n is so large that (3.6) holds. 
By Lemma 3.3 there exists an q > 0 so that Rk has at least ?2k zeros in [0, 1/16] 
if k is large enough. For such a large k E An, denote the zeros of Rk by 

(0 <)X1 < X2 < - . . < X2k (< 1) 

and let a2k denote the leading coefficient of Rk. The proof of Lemma 1 shows that 

2k 

| a2k |I t 

Observe that 

2k 2 k 2k 

II ITn(xi)I1= II ITIxi)I1/ II ITn(xi)Il/n 

i=l 1= = 
x E [0, 1/16] xt E(1/16, 1] 

<&72 (IITnII[o,l])2 /n. 

Taking the 2kth root and combining this with (3.7), we obtain that 

(3.8) 1 < a nll/n 

Taking the limit when k E An tends to oo, we conclude 

1a-71 < lITnil[/]n n = 0,1,... 

Since 0 < o < 1 and 0 < 71, the theorem is proved. O 

In general, on [0, 1/m] we prove the following lower bound for Q[0, 1/m]. 

Theorem 3.5. We have 

(rn+2- 4(m + 1) < Q[0)1/m] 

for every r = 1, 2. 



THE INTEGER CHEBYSHEV PROBLEM 673 

Proof. Change the definition of Rk in (3.2) to 

2k 

(3.9) Rk(X) := X2 kQk(1/X - m) aj, 2kxJ. 
j=o 

Then Rk E TR2k [0, 1/m] and 

k ~~~~~~kk 
la2k2 11/2k = IF[k](iVM-)1112 fl IF[i](iVM-)1| /, F(xr) = x - 

j=l 

where i is the imaginary unit and F[j] is defined by (3.4). It follows easily again 
that for every fixed pn E Z, there exist infinitely many Rk with no common factors 
with pn . Therefore, Lemma 1.1 yields that 

(3.10) 1Y < Q[O, l/m], 

where 

k 

(3.11) -Ym := lim IF[k](iM)l11/2 kII IF lil(i VM) 1/23 
k-*c)o 

j=1 

To give an upperbound for aym, first note that 

(3.12) -YM < f(,m) (M- + 1 / VM+ l/ (6M + l / VM))/ 

where the function f is defined by 

To estimate f(m), we distinguish four steps. 

Step 1. We have 
lim sup (f (x) - (x + 2)) < 0. 

x-*0, 

Proof. Indeed, 

f(x)-x<x(exp(Z 2 i 
( k=1 ) 

< x 
9 

ex\1 2 
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Step 2. The function 

g(x) := log f (x) - log(x + 2) 

is nondecreasing on (0, oo). 

Proof. We need to show that 

(logx + (E2k log (1 + )) -log(x + 2)) > 0 

on (0, ox). To this end, it is sufficient to show, in sequence, the following inequalities 
for all x (0, oc): 

1 1 

( 2 

x x?2?Z2kk >(?) 

x+2 - xx2 

k=1 

00 2-k (_ _) >0 

S ? ( 2 k)( ? 2) >0 

So 

-k 2~~-k > 2-k 2-- 
<2~ ~~ x> 

- 
=1 x 

00 00 00 

k=1~ ~~~~~~= 

(x + ?)(x+2) (2-2k_k2k) 

k=1~~~~ 

: (2k2)=0. 

(x + ?)(x + 2) 

for all x E (0, xc), so the statement is proved. 

Step 3. By Step 2 the function h defined by 

(x ) x + 2 

is nondecreasing. 
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Step 4. We have f (x) < x + 2 for every x E (0, oo). 

Proof. Otherwise, f (x)/(x + 2) > 1 + e for some x in (0, oo) and e > 0, hence by 
Step 3, f (x)/(x + 2) > 1+ e for every large enough x, so f (x) > x + 2 + 2e for every 
large enough x, which contradicts Step 1. 

We conclude that f(m) < m + 2, and the theorem follows from (3.10) and 
(3.12). C 

Combining the preceding theorem with a simple computation, we obtain 

Theorem 3.6. We have 

(mr+2- ) Q[0, 1/m] < (m +1.46)- 

if m E N is large enough. 

Proof. For oa = 1.32, 

jjx"m(mx - 1)((m + 1)x - 1)t11/(am+2) < (m + 1.46 + e)-1 

if m E N is large enough and e > 0 is small enough. C1 

The next theorem tells us that for c > 8 and large values of m e N the nth integer 
Chebyshev polynomial on [((m + c)-1, mr1] is forced to have a zero at 0 with large 
multiplicity. This leads to the interesting observation that if m E N and c > 8 are 
large enough then the nth integer Chebyshev polynomials on [((m + c)>1, m-1] are 
exactly the nth integer Chebyshev polynomials on [0, m-1]. See Corollary 3.8. It 
also follows that there exists an absolute constant c > 0 so that if n < cm, then 
each of the nth integer Chebyshev polynomials Tn := Tn[O, 1/m] is of the form 
Tn(x) = xn. 

Theorem 3.7. Let m be a positive integer and c > 8. Let 

ImC := [(m + c)-1, m-1], 

and let Tn := Tn{Im,c} E Zn be an nth integer Chebyshev polynomial on Imc. Then 
Tn is of the form 

Tn(X) = XkQn-k(X), Qn-k E Zn-k, Qn-k(0) $8 0, 

with 

n (1-1 2- < k. n 
-log2 m 

k 

Proof. Chebyshev's inequality [6, ?5.1] and the explicit form of the (usual noninte- 
ger) Chebyshev polynomial of degree n give 

) < 1 2(y-(a + b)/2) 71 LPII[a,b], y [a, b], 2 (b -a)/2 

for every P E PPn. Applying this with 

P:=Tn, a:=(r+c)-1, b=r1 y:=0, 
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we obtain that 

1 IQn-k(0)j < 2n-k (2(r+8)) Q-k i, 

(2(rn 8))n-k ( 1 )-k 

( 8 ) m + 8) /2(rn?+8)\n-k 1 -k 
< 2n-k -8 \n8 nT 

n-0 k m+ 8 n 

where we used that 

IITnllim8 < IITnlHimc < lXnllxImc =rn-n 

and the observation that Qn-k E Zk and Qn-k(0) 7 0 implies that 1 < |Qn-k(0)|. 
We conclude that 

(n- k) log2 < n log(1 + 8m-1) < n(8m-1), 

and the theorem follows. 

Corollary 3.8. Suppose m N , m > 32/ log 2, and c > 32/ log 2. Let 

Tn :=Tn{[(m +? c)1, mr1]} Zn 

be an nth integer Chebyshev polynomial on [(m + c)-1,r-1]. Then Tn is also an 
nth integer Chebyshev polynomial on [0, 1/m]. 

Proof. Combine Theorem 3.7 and Lemma 3.2. D 

The next theorem shows that if a E (0,1/8) then an nth integer Chebyshev 
polynomial on [a, 1] has at least (0.17)n zeros at 0. See Corollary 3.10. It follows 
easily from this that the nth integer Chebyshev polynomials on [0,1 - (0.17)2] 
are exactly the nth integer Chebyshev polynomials on [0,1]. See Corollary 3.12. 
This implies that the function Q(x) :=Q[0, x] is constant on [1 - (0.17)2, 1]. This, 
together with the second statement of Theorem 3.1, yields that Q is constant on 
an open neighborhood of 1. 

Theorem 3.9. Let a E (0,1). Let Tn := Tn{[a, 1]} E Zn be an nth integer Cheby- 
shev polynomial on [a, 1]. Suppose that ae E (0, 1/v5g] satisfies 

2.36 > 
(2a)2Q(1 )1-a 1 ( + 1a (1 +1 )-1) 

Then 
Tn(X) = Xk Qn-k(X), Qn-k E Zn-k, Qn-k(0) & 0, 

with an < k for every sufficiently large n. 
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Proof. Combining inequality (3.1), Chebyshev's inequality [6, ?5.1], the explicit 
form of the (usual noninteger) Chebyshev polynomial of degree n, and Proposition 
2.2, we obtain that 

< k?(n+-k ) (1i?2a? j(l?+l _) -1)I[TnILO,l[? 1 _jk(j V2k+l(nn?-k1) i+l+n (l l~2![0,1]?)~ 

n n k ) 1 _ a 2 1-a 
2 

for some e > 0. Hence by Stirling's formula, if k/n < a < 1// and n is large 
enough, then 

2.36 < (2 a1 + )1n (1++ 2a a )_ 

n - k ~ 1 - a + 

This contradicts the assumption of the theorem. OI 

Corollary 3.10. Let a E (0,1/8). Let Tn :=uTn{[a, 1]} E Z< be an nth integer 
Chebyshev polynomial on [0, a]. Then 

Tn(2) = x Qn-k(X), Qn-k E Zn-k, Qn-k(O) 0, 

with O.17n K k for every sufficiently large n. 

Proof. This follows from Corollary 3.9. O 

Corollary 3.11. Let a E (0(0.17)2]. Let Tn := Tn{[a, 1]} E Zn be an nth integer 
Chebyshev polynomial on [a, 1]. Then Tn is an nth integer Chebyshev polynomial 
on [0, 1] for every sufficiently large n. 

Proof. Combine Corollary 3.10 and Lemma 3.2. 9 

Corollary 3.12. Let a E (0, (0.17)2]. Let Tn := Tn{[, 1-a]} E Zn be an nth 
integer Chebyshev polynomial on [0,1-a]. Then Tn is an nth integer Chebyshev 
polynomial on [0, 1] for every sufficiently large n. 

Proof. Apply Corollary 3.11 with the substitution y = 1 - x. O 

To find the value lim supm ((Q[0, 1/m])> - m) seems to be an interesting prob- 
lem. Theorem 3.6 yields that this value is at most 2, and it may be suspected that 
it is exactly 2. However, the next corollary shows that it is less than 2. (This should 
be compared with Amoroso [1] where a weaker result is proved with 2 - e replaced 
by 2.) 

Corollary 3.13. Let 
-YM = (Q[0,1/m])- -iM. 
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Then there exists an e > 0 so that 

lim sup -ym < 2-,E. 
m 

Proof. This follows from Theorem 3.5, Corollary 3.8 and Lemmas 3.1 and 3.3. The 
details are similar to those given in the proof of Theorem 3.4, so we omit them. O 

4. THE SCHUR-SIEGEL TRACE PROBLEM 

Let a := a1 be an algebraic integer with conjugates 2, ... , an We say that 
ae is totally real (positive) if all the ai are real (positive). The trace of a totally 
positive algebraic integer is the sum a,i + c'2 + * * * + an , which is just, up to the sign, 
the second-highest coefficient of the minimal polynomial. Except for finitely many 
explicit exceptions, if ae is a totally real algebraic integer of degree d > 1, then 

a,1 + 2 + * ?+ aEd > 1.648, Schur (1918) 
d 

a,1 + 2 + * ?+ aEd > 1.733, Siegel (1945) 
d 

> 1.771, Smyth (1983). 
d 

See [16, 19, 20, 21]. Note that 4 cos2(7r/p) is a totally positive algebraic integer of 
degree (p - 1)/2 and trace p - 2 for p prime. So the best constant in the above 
theorem is less than 2. The connection with the integer Chebyshev Problem is the 
content of the next proposition. 

Proposition 4.1. Suppose m is a positive integer and 

Q[0, 1/m] < (m + 8)1 

Then, with at most finitely many exceptions, 

a,1 + a2 + *. + a?d> 
d 

for every totally positive algebraic integer a1 of degree d > 1 with conjugates 
Y2 ,... * ad 

Proof. Suppose p is the minimal polynomial for ae and 

p(X) := Xd- ad-lXd-I + ? * + ao; 

then a, + m, a2 + m, ... , ad + m are conjugate roots of q E Zd defined by 

q(x) = xd (ad-1 + nd)xd-l + + bo. 

Now by the arithmetic-geometric mean inequality 

bl/d = (-(a + m) (a, + m) (ad + m))1/d 

,1 + ?2 + ...? + d + dmn ad-l 
d d 
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We apply Lemma 1.1 to 
q(x) := x dq(llx), 

which has all its roots in (0,1/m) and is irreducible, to conclude that either 

ad-+m > m+& 
d 

(which is the conclusion we want) or q(x) is a factor of all nth integer Chebyshev 
polynomials on [0,1/m], provided n is large enough. O 

Corollary 4.2. If ca is a totally positive algebraic integer of degree d > 1 with 
conjugates a2, . . ., ad, then 

a,1 +a02 + ..+ad > 1.752, 
d 

with at most finitely many exceptions. (There are no exceptions of degree greater 
than 8.) 

This is not as good as Smyth's result. It, however, follows immediately from a 
computation, as ih ?2, which shows that 

Q[0, 1/200] < 201.752' 

and gives the factors of an example which yields the above upper bound. 

5. OPEN PROBLEMS 

There are a myriad of open problems in and around integer Chebyshev polyno- 
mials. We formulate a few of them as questions. 

Ql. Find a reasonable algorithm for exactly computing integer Chebyshev poly- 
nomials on [0,1] that would work up to, say, degree 200. 

Q2. Are the integer Chebyshev polynomials eventually unique? 

Q3. Do the integer Chebyshev polynomials on [0,1] have all their zeros in [0,1]? 

Q4. Determine Q[0, a] exactly for any 0 < a < 4. 

Q5. Determine the limit (or the limsup, if the limit does not exist) of 

(Q[0, 1/m])>1 - m. 

Q6. Are all the irreducible factors of the integer Chebyshev polynomials on [0,1] 
forced to be factors as in Lemma 1.1? That is, are all irreducible factors q of the 
form 

q(x) = akXk + ak-IXk-1x + +ao, 

with all their zeros in [0,1], and with 

|Ikllk < (Q[0 1]) I? IakI < 

Q7. Show that there exist infinitely many irreducible polynomials with integer 
coefficients which divide an nth integer Chebyshev polynomial on [0,1] for some n. 

Added in proof. In a preprint entitled "On integer Chebyshev polynomials" Hab- 
sieger and Salvy compute an nth integer Chebyshev polynomial on [0, 1] for every 
n = 1, 2,.. ., 75. The 70th such polynomial has a factor with four nonreal zeros. 
This gives partial answers to Q3 and Q6 above. 
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APPENDIX 

The following is a list of all polynomials of degree at most n, for n = 1, 2 ... , 22, 
which minimize HJPnJmL2[0,1] subject to pn E Zn. This computation was done in pari 
by using the minum function. 

Degree 1 z-1 
Degree 1 z 
Degree 2 (z - 1)z 
Degree 3 (2z - 1)z(z - 1) 
Degree 4 (2z - 1)(z - 1)z2 
Degree 4 (2z - 1)z(z - 1)2 
Degree 4 (5z2 - 5z + 1)(z - 1)z 
Degree 4 (z - 1)z(2z - 1)2 

Degree 4 (z - 1)2z 
Degree 5 (2z - 1)(z - 1)2Z2 

Degree 6 (2z - 1)2z2(z - 1)2 
Degree 7 (2z - 1)(5Z2 - 5z + 1)(z - 1)2Z2 
Degree 7 (2z - 1)(z -1)3 

Degree 8 (2z - 1)2(Z 1)3z3 
Degree 9 (2z - 1)(5Z2 - 5z + 1)(z -1)3z3 
Degree 10 (5z2 - 5z + 1)(2z - 1)2(z _ 1)3z3 
Degree 10 (2z - 1)2(z -1)4Z4 
Degree 11 (2z - 1)(5z2 - 5z + 1)(z - 

Degree 12 (5z2 - 5z + 1)(2z - 1)2(z _ W- 

Degree 13 (5z2 - 5z + 1)(2z - 1)2z4(z _ 1)5 
Degree 13 (5z2 - 5z + 1)(2z - 1)2(z _ Wz5 
Degree 13 (5z2 - 5z + 1)(2z - 1)3(z -_)4 

Degree 13 (2z - 1)(5Z2 - 5z + 1)(z -1)5z5 

Degree 13 (2z - 1)(5z2 - 5z + 1)2(Z _ 1)4z4 
Degree 13 (2z - 1)(29z4 - 58z3 + 40z2 _ lz + 1)(z -1)4z4 
Degree 13 (2z - 1)3(z -1)5z5 
Degree 14 (5z2 - 5z + 1)(2z - 1)2(z _ 1)5z5 
Degree 15 (5z2 - 5z + 1)(2z - 1)3(z -1)5z5 

Degree 16 (5z2 - 5z + 1)(2z - 1)2(Z _ 1)6Z6 
Degree 17 (5z2 - 5z + 1)(2z - 1)3(z -1)6z6 
Degree 18 (2z - 1)2(5Z2 - 5z + 1)(z -1)6Z6 
Degree 19 (5z2 - 5z + 1)(2z - 1)3(z - 1)7z7 
Degree 20 (5z2 - 5z + 1)(29z4 - 58z3 + 40z2 _ llz + 1)(2z - 1)2(Z _ 1)6Z6 
Degree 21 (5Z2 - 5z + 1)2(2z -1)3(z -1)7z7 
Degree 22 (5z2 - 5z + 1)(2z - 1)4(Z 1)8z8 
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